© Springer-Verlag 2002 Printed in Austria

Synthesis of 3-Diaminomethylene-2(3*H*)-furanones by Reaction of 2-Amino-4,5-dihydro-3-furancarboxamides with Amines

Kenji Yamagata*, Fumi Okabe, Motoyoshi Yamazaki, and Yoshinobu Tagawa

Faculty of Pharmaceutical Sciences, Fukuoka University, 814-0180 Fukuoka, Japan

Summary. The reaction of 2-amino-4,5-dihydro-3-furancarboxamides with morpholine in the presence of acetic acid in pyridine or under the influence of ammonium acetate gave the corresponding 3-diaminomethylene-4,5-dihydro-2(3H)-furanones; 4,5-dihydro-2-morpholino-3-furancarboxamides were not isolated. One of the former reacted with benzylamine to give (E)- and (Z)-3-(amino-(benzylamino)-methylene)-4,5-dihydro-4-phenyl-2(3H)-furanones and 2-benzylamino-4,5-dihydro-4-phenyl-3-furancarboxamide.

Keywords. Furancarboxamides; Furanones; Amines; Michael addition; Recyclization.

Introduction

Earlier, we have reported on the reaction of 2-amino-4,5-dihydro-3-furancarbonitriles (1) with amines such as morpholine, pyrrolidine, and piperidine to give 4,5-dihydro-2-morpholino-(2-pyrrolidino and 2-piperidino)-3-furancarbonitriles [1, 2]. This reaction probably occurs *via Michael* addition to the α,β -unsaturated nitrile moiety of 1 with amine to form the intermediate adduct which undergoes elimination of ammonia to give the observed products. The reaction suggests the possibility that when 2-amino-4,5-dihydro-3-furancarboxamides 3 are treated with amines, the *Michael* adduct initially formed may undergo elimination of ammonia to furnish the corresponding 2-amino-4,5-dihydro-3-furancarboxamides. Thus, we have investigated the reaction of 3 with amines.

Results and Discussion

The required tetrahydro-2-oxo-4-phenyl- and -5-phenyl-3-furancarbonitriles (2a and 2b) [3,4] were obtained by reaction of 2-amino-4,5-dihydro-4-phenyl- and -5-phenyl-3-furancarbonitriles (1a and 1b) [5] with hydrochloric acid. The starting materials 3 were prepared from 2 and concentrated ammonium hydroxide according to Ref. [6] (Scheme 1).

^{*} Corresponding author. E-mail: yamagata@fukuoka-u.ac.jp

Scheme 1

When a mixture of 3a, morpholine, and acetic acid in pyridine was heated at 80°C, 3-diaminomethylene-4,5-dihydro-4-phenyl-2(3H)-furanone (4a) was obtained in 75% yield, and the expected 4,5-dihydro-2-morpholino-4-phenyl-3furancarboxamide could not be isolated (Scheme 2). The structure of 4a was deduced from satisfactory elemental analyses and spectroscopic data. The mass spectrum and the results of elemental analyses of 4a indicate that both 4a and 3a have the same molecular composition $C_{11}H_{12}N_2O_2$. The IR spectrum of 4a displays a band due to a lactone carbonyl group conjugated with an enamine group [7] at 1660 cm⁻¹. Similarly, the reaction of **3b** with morpholine afforded 3-diaminomethylene-4,5-dihydro-5-phenyl-2(3H)-furanone (4b). In order to confirm the structure of 4a, we carried out the reaction shown in Scheme 3. The reaction of 4a with benzoyl chloride gave 3-(amino-(benzamido)-methylene)-2(3H)-furanone 5. Hydrolysis of 5 with hydrochloric acid provided N-benzoyl-3-furancarboxamide 6 which was converted into methyl 2-oxo-4-phenyl-3-furancarboxylate 7 [8] by treatment with concentrated hydrochloric acid and methanol. The structure of 7 was confirmed by direct comparison with an authentic sample which was synthesized by the following methods: methyl 2-amino-4-phenyl-3-furancarboxylate 8 was prepared from 2a and a catalytic amount of sodium methoxide according to Ref. [9]. Hydrolysis of **8** with hydrochloric acid provided the desired compound **7**.

The formation of **4** can be explained by the mechanism shown in Scheme 2. The *Michael* addition of morpholine to **3** gives the adduct **A** which undergoes recyclization to provide **B**. **B** in turn is transformed into the intermediates **11** by elimination of ammonia. The conjugated addition of ammonia to **11** produces the adduct **C** which undergoes elimination of morpholine to yield **4**.

Subsequently, we examined the reaction of the intermediates 11 with ammonia in the presence of acetic acid in order to prove whether or not compounds 4 are formed. Compounds 11 were prepared by successive treatment of 2 with trimethylsilylmorpholine and water. The IR spectra of 11 showed a primary amino bands near 3300 cm⁻¹, but lacked a characteristic nitrile band. The reaction of 11 with ammonium acetate afforded 4 in good yields. In a similar manner, the reaction of 3 with ammonium acetate resulted in the formation of the same compounds 4. Probably, this recyclization takes place through the adduct **D**.

Finally, we have examined the reaction of **3a** with benzylamine in order to explore the scope of this type of reaction. The reaction of **3a** with benzylamine

3a,b
$$O$$
NH, AcOH
pyridine

$$A$$

2a,b
$$(a,b)$$
 (a,b) (a,b)

Scheme 2

Scheme 3

K. Yamagata et al.

yielded a 1:1 mixture of 3-(amino-(benzylamino)-methylene)-2(3H)-furanones (9 and 9′, 57%) and 2-benzylamino-3-furancarboxamide 10 (11%), and 4a could not be isolated. An analogous reaction has also been observed by *Wamhoff et al.* when dealing with the reaction of ethyl 2-amino-4,5-dihydro-3-furancarboxylates and methylamine [7]. The 1H NMR spectrum of 10 in deuteriochloroform indicates that 10 consists of an approximately 4:1 tautomeric mixture of the enamine (E) and imine (F) forms (Scheme 4). Separation of 9 and 9′ was attempted by column chromatography, but was not successful. When a mixture of 9/9′ were recovered unchanged. Compound 10 was easily hydrolyzed to 2-oxo-3-furancarboxamide 12 when heated with hydrochloric acid. Compound 12 was also obtained by treatment of 3a with hydrochloric acid.

Experimental

All melting points are uncorrected. IR spectra were taken with a Jasco A-302 spectrometer. ¹H and ¹³C NMR spectra were measured on Jeol JNM-A500 instrument (500.00 MHz for ¹H, 125.65 MHz for ¹³C) with *TMS* as internal standard; ¹³C signal assignments were confirmed by the DEPT technique. Mass spectra were recorded with a Jeol JMS-HX110 equipment at 70 eV. Elemental analyses were performed using a MT-6 elemental analyzer (Yanaco); the data were found to be within 0.3% of the calculated values.

Tetrahydro-2-oxo-3-furancarbonitriles (2); general procedure

A mixture of 18.60 g (100 mmol) $\mathbf{1}$ and 150 cm³ 5% HCl was stirred at room temperature for 1 h. The precipitate was collected by filtration, washed with H_2O , and dried to give $\mathbf{2}$.

Tetrahydro-2-oxo-4-phenyl-3-furancarbonitrile (**2a**; C₁₁H₉NO₂)

Yield: 16.82 g (90%); colorless needles; m.p.: 94–95°C (acetone/petroleum ether) (Ref. [3]: m.p.: 126–128°C); IR (KBr): ν = 2250 (C \equiv N), 1790 (C=O) cm $^{-1}$; 1 H NMR (CDCl $_{3}$, δ): 3.80 (d, J = 11.6 Hz, 0.8H, 3-H), 4.01 (ddd, J = 4.0/6.4/8.6 Hz, 0.2H, 4-H), 4.06 (d, J = 8.6 Hz, 0.2H, 3-H), 4.08 (ddd, J = 8.0/10.4/11.6 Hz, 0.8H, 4-H), 4.34 (dd, J = 9.5/10.4 Hz, 0.8H, 5-H), 4.66 (dd, J = 4.0/9.7 Hz, 0.2H, 5-H), 4.72 (dd, J = 6.4/9.7 Hz, 0.2H, 5-H), 4.75 (dd, J = 8.0/9.5 Hz, 0.8H, 5-H), 7.28–7.50 (m, 5H, aryl) ppm; MS (FAB): m/z (%) = 188 (62) [M $^+$ + H].

Tetrahydro-2-oxo-5-phenyl-3-furancarbonitrile (2b; C₁₁H₉NO₂)

Yield: 16.31 g (87%); colorless needles; m.p.: 134–136°C (acetone/petroleum ether) (Ref. [3]: m.p.: 113–115°C); IR (KBr): ν = 2270 (C \equiv N), 1770 (C \equiv O) cm $^{-1}$; 1 H NMR (*DMSO*-d₆, δ): 2.55–2.70 (m, 1H, 4-H), 3.00–3.10 (m, 1H, 4-H), 4.62 (dd, J = 7.9/9.8 Hz, 0.2H, 3-H), 4.71 (dd, J = 8.2/12.5 Hz, 0.8H, 3-H), 5.55 (dd, J = 5.5/10.7 Hz, 0.8H, 5-H), 5.83 (dd, J = 5.2/8.0 Hz, 0.2H, 5-H), 7.40–7.50 (m, 5H, aryl) ppm; MS (FAB): m/z (%) = 188 (37) [M $^{+}$ + 1].

2-Amino-4,5-dihydro-3-furancarboxamides (3); general procedure

A mixture of 3.74 g (20 mmol) 2 and $20 \, \text{cm}^3$ concentrated ammonium hydroxide was stirred at room temperature for 1 h. The reaction mixture was cooled and diluted with H_2O . The resulting precipitate was collected by filtration, washed with H_2O , and dried to give 3.

2-Amino-4,5-dihydro-4-phenyl-3-furancarboxamide (3a; C₁₁H₁₂N₂O₂)

Yield: 3.89 g (95%); colorless columns; m.p.: 177–178°C (acetone); IR (KBr): ν = 3480, 3450, 3285, 3190 (NH), 1655 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆, δ): 4.04 (dd, J = 4.5/8.0 Hz, 1H, 5-H), 4.22 (dd, J = 4.5/8.0 Hz, 1H, 4-H), 4.61 (t, J = 8.0 Hz, 1H, 5-H), 5.60 (s, 2H, NH₂), 6.96 (s, 2H, NH₂), 7.19–7.24 (m, 3H, aryl), 7.28–7.31 (m, 2H, aryl) ppm; ¹³C NMR (*DMSO*-d₆, δ): 45.0 (C-4), 77.0 (C-3), 79.0 (C-5), 126.4, 127.0, 128.3, 145.2 (C aryl), 166.5 (C-2), 168.7 (C=O) ppm; MS (EI): m/z (%) = 204 (52) [M⁺].

2-Amino-4,5-dihydro-5-phenyl-3-furancarboxamide (**3b**; C₁₁H₁₂N₂O₂)

Yield: 3.29 g (81%); colorless prisms; m.p.: 134–135°C (acetone); IR (KBr): ν = 3480, 3445 (sh), 3280, 3160 (NH), 1660 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆, δ): 2.63 (dd, J = 7.1/12.5 Hz, 1H, 4-H), 3.18 (dd, J = 9.8/12.5 Hz, 1H, 4-H), 5.56 (dd, J = 7.1/9.8 Hz, 1H, 5-H), 6.01 (s, 2H, NH₂), 6.82 (s, 2H, NH₂), 7.32–7.39 (m, 5H, aryl) ppm; ¹³C NMR (*DMSO*-d₆, δ): 36.2 (C-4), 72.8 (C-3), 80.9 (C-5), 125.4, 127.8, 128.4, 141.9 (C aryl), 164.8 (C-2), 169.0 (C=O) ppm; MS (FAB): m/z (%) = 205 (100) [M⁺ + H].

3-Diaminomethylene-4,5-dihydro-2(3H)-furanones (4); general procedure

Procedure A: To an ice-cooled and stirred solution of 4.08 g (20 mmol) **3** and 1.92 g (22 mmol) morpholine in 15 cm³ pyridine, 1.32 g (22 mmol) acetic acid were added. The mixture was stirred at 80° C for 3 h. The solvent was removed, and $50 \, \text{cm}^3$ H₂O were added to the residue. The precipitate was collected, washed with H₂O, and dried. Yields: **4a** (3.04 g, 75%) and **4b** (1.22 g, 30%).

Procedure B: A mixture of 1.37 g (5 mmol) **11** and 0.42 g (5.5 mmol) ammonium acetate in 5 cm³ pyridine was stirred at 60° C for 3 h. The solvent was removed, and 20 cm^3 H₂O were added to the residue. The precipitate was collected, washed with H₂O, and dried. Yields: **4a** (0.92 g, 90%) and **4b** (0.60 g, 59%).

K. Yamagata et al.

Procedure C: A mixture of 2.04 g (10 mmol) **3** and 0.85 g (11 mmol) ammonium acetate in $10 \,\mathrm{cm}^3$ pyridine was stirred at 80° C for 3 h. The solvent was removed, and $50 \,\mathrm{cm}^3$ H₂O were added to the residue. The precipitate was collected, washed with H₂O, and dried. Yields: **4a** (1.74 g, 85%) and **4b** (1.20 g, 59%).

3-Diaminomethylene-4,5-dihydro-4-phenyl-2(3H)-furanone (4a; C₁₁H₁₂N₂O₂)

Colorless columns; m.p.: $207-208^{\circ}$ C (acetone); IR (KBr): $\nu = 3490$, 3430, 3225, 3155 (NH), 1660 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆, δ): 3.79 (dd, J = 3.0/8.9 Hz, 1H, 4-H), 4.14 (dd, J = 2.8/8.9 Hz, 1H, 5-H), 4.38 (t, J = 8.9 Hz, 1H, 5-H), 5.57 (s, 2H, NH₂), 6.63 (s, 2H, NH₂), 7.18–7.30 (m, 5H, aryl) ppm; ¹³C NMR (*DMSO*-d₆, δ): 42.6 (C-4), 70.6 (C-3), 71.8 (C-5), 126.2, 126.7, 128.2, 145.7 (C aryl), 158.3 (=C(NH₂)₂), 173.0 (C-2) ppm; MS (EI): m/z (%) = 204 (88) [M⁺].

3-Diaminomethylene-4,5-dihydro-5-phenyl-2(3H)-furanone (**4b**; C₁₁H₁₂N₂O₂)

Colorless prisms; m.p.: 176–177°C (acetone); IR (KBr): $\nu = 3510$, 3450, 3350, 3200 (NH), 1665 (C=O) cm⁻¹; ¹H NMR (*DMSO*-d₆, δ): 2.50 (dd, J = 6.4/12.5 Hz, 1H, 4-H), 3.11 (dd, J = 9.5/12.5 Hz, 1H, 4-H), 5.30 (dd, J = 6.4/9.5 Hz, 1H, 5-H), 5.91 (s, 2H, NH₂), 6.50 (s, 2H, NH₂), 7.27–7.38 (m, 5H, aryl) ppm; ¹³C NMR (*DMSO*-d₆, δ): 34.2 (C-4), 64.8 (C-3), 75.0 (C-5), 125.2, 127.3, 128.3, 143.5 (C aryl), 157.8 (=C(NH₂)₂), 172.3 (C-2) ppm; MS (FAB): m/z (%) = 205 (100) [M⁺ + H].

3-(Amino-(benzamido)-methylene)-4,5-dihydro-4-phenyl-2(3H)-furanone (5; $C_{18}H_{16}N_2O_3$)

To an ice-cooled and stirred suspension of 2.04 g (10 mmol) **4a** in 10 cm³ pyridine, 1.55 g (11 mmol) benzoyl chloride were added. The mixture was heated at 50°C for 1 h. The solvent was removed, and 50 cm³ H₂O were added to the residue. The precipitate was collected, washed with H₂O, and dried. Yield: 2.62 g (85%); pale yellow needles; m.p.: 174–175°C (acetone); IR (KBr): ν = 3480, 3340 (NH), 1775, 1630 (C=O) cm⁻¹; ¹H NMR (CDCl₃, δ): 4.10 (dd, J = 6.1/9.5 Hz, 1H, 4-H), 4.31 (dd, J = 6.1/9.5 Hz, 1H, 5-H), 4.71 (t, J = 9.5 Hz, 1H, 5-H), 5.00–6.70 (br, 2H, NH₂), 7.40–7.60 (m, 8H, aryl), 8.01–8.03 (m, 2H, aryl), 12.46 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, δ): 43.7 (C-4), 73.7 (C-5), 78.3 (C-3), 127.3, 127.7, 128.0, 129.0, 129.5, 132.5, 133.1, 141.2 (C aryl), 153.0 (=C(NH₂)NH), 167.7, 174.9 (C=O) ppm; MS (FAB): m/z (%) = 309 (100) [M⁺ + H].

N-Benzoyltetrahydro-2-oxo-4-phenyl-3-furancarboxamide (6; C₁₈H₁₅NO₄)

To a stirred suspension of 1.54 g (5 mmol) 5 in $10 \, \text{cm}^3$ acetone, $10 \, \text{cm}^3$ 10% HCl were added. The mixture was stirred at room temperature for 15 h, cooled, and poured onto $30 \, \text{cm}^3$ H₂O. The precipitate was collected, washed with H₂O, and dried.

Yield: 1.44 g (93%); colorless needles; m.p.: 179–180°C (acetone/petroleum ether); IR (KBr): ν = 3360 (NH), 1770, 1750, 1695 (C=O) cm⁻¹; ¹H NMR (CDCl₃, δ): 4.36 (t, J = 9.8 Hz, 1H, 5-H), 4.41 (dt, J = 8.6/10.1 Hz, 1H, 4-H), 4.64 (d, J = 10.1 Hz, 1H, 3-H), 4.75 (t, J = 8.6 Hz, 1H, 5-H), 7.30–7.60 (m, 8H, aryl), 7.85–7.90 (m, 2H, aryl), 9.61 (s, 1H, NH) ppm; ¹³C NMR (CDCl₃, δ): 43.3 (C-4), 54.1 (C-3), 72.8 (C-5) 127.4, 127.8, 128.1, 129.0, 129.2, 132.4, 133.5, 137.3 (C aryl), 164.8, 165.6, 172.7 (C=O) ppm; MS (FAB): m/z (%) = 310 (59) [M⁺ + H].

Methyl tetrahydro-2-oxo-4-phenyl-3-furancarboxylate (7; C₁₂H₁₂O₄)

Procedure A: A mixture of $1.55\,\mathrm{g}$ (5 mmol) **6** and $10\,\mathrm{cm}^3$ concentrated HCl in $10\,\mathrm{cm}^3$ MeOH was refluxed for 6 h. The solvent was removed, and $30\,\mathrm{cm}^3$ cold H_2O were added to the residue. The

mixture was extracted with CH_2Cl_2 . The extract was washed with H_2O , dried over Na_2SO_4 , and concentrated. The residue was chromatographed on silica gel with CH_2Cl_2 as the eluent to give 7 (0.71 g, 65%).

Procedure B: A suspension of $1.10\,\mathrm{g}$ (5 mmol) **8** and $10\,\mathrm{cm}^3$ 5% HCl was stirred at room temperature for 0.5 h. The oily product was extracted with $\mathrm{CH_2Cl_2}$. The extract was washed with $\mathrm{H_2O}$, dried over $\mathrm{Na_2SO_4}$, and concentrated. The residue was chromatographed on silica gel with $\mathrm{CH_2Cl_2}$ as the eluent to give **7** (0.97 g, 88%).

Colorless prisms; m.p.: $60-61^{\circ}$ C (Et₂O/petroleum ether); IR (KBr): $\nu=1788$, 1732 (C=O) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.73 (d, J=10.1 Hz, 1H, 3-H), 3.80 (s, 3H, CH₃), 4.19–4.25 (m, 1H, 4-H), 4.28 (t, J=8.8 Hz, 1H, 5-H), 4.72 (dd, J=8.0/8.8 Hz, 1H, 5-H), 7.25–7.39 (m, 5H, aryl) ppm; MS (FAB): m/z (%) = 221 (100) [M⁺ + H].

Methyl 2-amino-4,5-dihydro-4-phenyl-3-furancarboxylate (8; C₁₂H₁₃NO₃)

A mixture of 5.61 g (30 mmol) 2a and 0.16 g (3 mmol) MeONa in $20 \, \text{cm}^3$ MeOH was heated at 60° C for 7 h. The mixture was cooled, and 0.16 g (3 mmol) acetic acid were added. The solvent was removed, and $50 \, \text{cm}^3$ H₂O were added to the residue. The mixture was extracted with CH₂Cl₂. The extract was washed with H₂O, dried over Na₂SO₄, and concentrated. The residue was chromatographed on alumina with CH₂Cl₂ as the eluent to give 8.

Yield: 5.48 g (83%); colorless prisms; m.p.: 150–151°C (CH₂Cl₂/petroleum ether); IR (KBr): $\nu = 3470, 3250$ (NH), 1660 (C=O) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.50 (s, 3H, CH₃), 4.54 (dd, J = 3.9/8.1 Hz, 1H, 4-H), 4.29 (dd, J = 3.9/8.1 Hz, 1H, 5-H), 4.70 (t, J = 8.1 Hz, 1H, 5-H), 5.75 (s, 2H, NH₂), 7.15–7.30 (m, 5H, aryl) ppm; MS (FAB): m/z (%) = 220 (100) [M⁺ + H].

Reaction of 3a with benzylamine

To an ice-cooled and stirred solution of 2.04 g (10 mmol) 3a and 1.18 g (11 mmol) benzylamine in $10 \, \text{cm}^3$ pyridine, 0.66 g (11 mmol) acetic acid were added. The mixture was stirred at 60°C for 3 h. The solvent was removed, and $30 \, \text{cm}^3$ H₂O were added to the residue. The mixture was extracted with CH₂Cl₂. The extract was washed with H₂O, dried over Na₂SO₄, and concentrated. The residue was chromatographed on alumina with CH₂Cl₂:acetone = 4:1 as the eluent to give a mixture of 9, 9', and 10. Fractional recrystallization from acetone/petroleum ether gave colorless needles (9 and 9', 1.67 g, 57%) and colorless columns (10, 0.33 g, 11%).

(E)- and (Z)-3-(Amino-(benzylamino)-methylene)-4,5-dihydro-4-phenyl-2(3H)-furanones (**9** and **9**'; $C_{18}H_{18}N_2O_2$)

M.p.: $135-137^{\circ}$ C; IR (KBr): $\nu=3460$, 3430, 3370, 3260 (NH), 1670 (C=O) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.91 (br s, 1H, NH₂), 3.97 (dd, J=5.7/8.3 Hz, 0.5H, 4-H), 3.99 (dd, J=5.2/8.3 Hz, 0.5H, 4-H), 4.27 (dq, J=5.1/13.1 Hz, 1H, benzylic H), 4.21 (dd, J=5.7/8.3 Hz, 0.5H, 5-H), 4.22 (dd, J=5.2/8.3 Hz, 0.5H, 5-H), 4.26 (br t, J=5.1 Hz, 0.5H, NH), 4.36 (dq, J=6.2/15.3 Hz, 1H, benzylic H), 4.59 (t, J=8.3 Hz, 1H, 5-H), 6.14 (br s, 1H, NH₂), 7.40-7.70 (m, 10H, aryl), 8.71 (br t, J=6.2 Hz, 0.5H, NH) ppm; MS (FAB): m/z (%) = 295 (100) [M⁺ + H].

2-Benzylamino-4,5-dihydro-4-phenyl-3-furancarboxamide (10; C₁₈H₁₈N₂O₂)

M.p.: $110-112^{\circ}$ C; IR (KBr): $\nu = 3490$, 3270, 3120 (NH), 1660 (C=O) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.66 (d, J = 7.3 Hz, 0.2H, 3-H), 4.13–4.18 (m, 0.2H, 4-H), 4.17 (dd, J = 6.1/8.9 Hz, 0.8H, 4-H), 4.26 (dd, J = 7.2/8.9 Hz, 0.2H, 5-H), 4.31 (dd, J = 6.1/9.5 Hz, 0.8H, 5-H), 4.36 (br s, 1.6H, NH₂), 4.49 (d, J = 6.7 Hz, 1.6H, benzylic H), 4.55 (q, J = 13.7 Hz, 0.4H, benzylic H), 4.64 (dd, J = 8.0/8.9 Hz,

650 K. Yamagata et al.

0.2H, 5-H), 4.75 (dd, J = 8.9/9.5 Hz, 0.8H, 5-H), 5.44 (br s, 0.2H, NH₂), 7.26–7.36 (m, 10H, aryl), 7.77 (br s, 0.2H, NH₂), 8.15 (br s, 0.8H, NH) ppm; MS (FAB): m/z (%) = 295 (100) [M⁺ + H].

Tetrahydro-2-oxo-4-phenyl-3-furancarboxamide (12; C₁₁H₁₁NO₃)

Procedure A: A mixture of 0.59 g (2 mmol) **10** and 5 cm³ 5% HCl was stirred at 40°C for 2 h. The product was extracted with CH_2Cl_2 . The extract was washed with H_2O , dried over Na_2SO_4 , and concentrated. The residue was chromatographed on silica gel with CH_2Cl_2 :acetone = 4:1 as the eluent to give **12** (0.23 g, 56%).

Procedure B: A mixture of $1.02 \,\mathrm{g}$ (5 mmol) **3a** and $5 \,\mathrm{cm}^3$ 5% HCl was stirred at room temperature for $0.5 \,\mathrm{h}$. The precipitate was collected, washed with $\mathrm{H}_2\mathrm{O}$, and dried to give **12** (0.74 g, 72%).

Colorless columns; m.p.: 119–121°C (acetone/petroleum ether); IR (KBr): $\nu = 3470$, 3360 (NH), 1755, 1700 (C=O) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.58 (d, J = 8.9 Hz, 1H, 3-H), 4.25–4.35 (m, 2H, 4-H, 5-H), 4.72 (t, J = 8.0 Hz, 1H, 5-H), 5.73 (br s, 1H, NH), 6.69 (br s, 1H, NH), 7.25–7.30 (m, 3H, aryl), 7.35–7.40 (m, 2H, aryl) ppm; MS (FAB): m/z (%) = 206 (100) [M⁺ + H].

3-(Amino-(morpholino)-methylene)-4,5-dihydro-2(3H)-furanones (11); general procedure

A solution of 3.74 g (20 mmol) **2** and 3.50 g (22 mmol) trimethylsilylmorpholine in $20 \,\mathrm{cm}^3$ CH₂Cl₂ was stirred at room temperature for 48 h. The mixture was washed with H₂O, dried over Na₂SO₄, and concentrated. The residue was chromatographed on alumina with CH₂Cl₂ as the eluent to give **11**.

3-(Amino-(morpholino)-methylene)-4,5-dihydro-4-phenyl-2(3H)-furanone (11a; $C_{15}H_{18}N_2O_3$)

Yield: 1.49 g (27%); colorless columns; m.p.: 134–135°C (acetone/petroleum ether); IR (KBr): ν = 3300, 3220 (NH), 1630 (C=O) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.00–3.40 (m, 8H, 4CH₂ morpholine), 3.83 (dd, J = 6.7/8.3 Hz, 1H, 5-H), 4.36 (dd, J = 6.7/8.9 Hz, 1H, 4-H), 4.54 (dd, J = 8.3/8.9 Hz, 1H, 5-H), 6.32 (s, 2H, NH₂), 7.16–7.33 (m, 5H, aryl) ppm; ¹³C NMR (CDCl₃, δ): 46.3 (C-4, NCH₂), 66.0 (OCH₂), 72.6 (C-5), 75.8 (C-3), 127.1, 127.3, 128.7, 142.9 (C aryl), 161.2 (=C-NH₂), 176.5 (C-2) ppm; MS (FAB): m/z (%) = 275 (100) [M⁺ + H].

 $3\hbox{-}(Amino\hbox{-}(morpholino)\hbox{-}methylene)\hbox{-}4,5\hbox{-}dihydro\hbox{-}5\hbox{-}phenyl\hbox{-}2(3H)\hbox{-}furanone} \\ \textbf{(11b;}\ C_{15}H_{18}N_2O_3)$

Yield: 3.81 g (70%); colorless columns; m.p.: 144–146°C (acetone/petroleum ether); IR (KBr): ν = 3390, 3240 (NH), 1640 (C=O) cm⁻¹; 1 H NMR (CDCl₃, δ): 2.77 (dd, J = 7.0/12.9 Hz, 1H, 4-H), 3.24 (dd, J = 8.6/12.9 Hz, 1H, 4-H), 3.23–3.30 (m, 4H, 2CH₂ morpholine), 3.67–3.71 (m, 4H, 2CH₂ morpholine), 5.36 (dd, J = 7.0/8.6 Hz, 1H, 5-H), 6.14 (s, 2H, NH₂), 7.30–7.40 (m, 5H, aryl) ppm; 13 C NMR (CDCl₃, δ): 37.0 (C-4), 46.8 (NCH₂), 66.6 (OCH₂), 72.8 (C-3), 77.0 (C-5), 125.4, 127.8, 128.5, 142.1 (C aryl), 160.5 (=C–NH₂), 175.6 (C-2) ppm; MS (FAB): m/z (%) = 275 (100) [M⁺ + H].

References

- [1] Yamagata K, Takaki M, Yamazaki M (1992) Liebigs Ann Chem 1109
- [2] Yamagata K, Akizuki K, Yamazaki M (1998) J Prakt Chem 340: 51
- [3] Hashem AI, Shaban ME (1981) Indian J Chem 20B: 807
- [4] Allegretti M, D'Annibale A, Trogolo C (1993) Tetrahedron 49: 10705

- [5] Matsuda T, Yamagata K, Tomioka Y, Yamazaki M (1985) Chem Pharm Bull 33: 937
- [6] a) Campaigne E, Ho J, Bradford M (1970) J Heterocycl Chem 7: 257; b) Campaigne E, Ellis RL, Bradford M (1969) J Heterocycl Chem 6: 159
- [7] Huang Z, Wamhoff H (1984) Chem Ber 117: 622
- [8] Hussain SMMT, Ollis WD, Smith C, Stoddart JF (1975) J Chem Soc Perkin Trans 1, 1480
- [9] Campaigne E, Ellis RL, Bradford M, Ho J (1969) J Med Chem 12: 339

Received October 4, 2001. Accepted October 10, 2001